815 research outputs found

    Time-resolved spectroscopy at surfaces and adsorbate dynamics: insights from a model-system approach

    Full text link
    We introduce a model description of femtosecond laser induced desorption at surfaces. The substrate part of the system is taken into account as a (possibly semi-infinite) linear chain. Here, being especially interested in the early stages of dissociation, we consider a finite-size implementation of the model (i.e., a finite substrate), for which an exact numerical solution is possible. By time-evolving the many-body wave function, and also using results from a time-dependent density functional theory description for electron-nuclear systems, we analyze the competition between several surface-response mechanisms and electronic correlations in the transient and longer time dynamics under the influence of dipole-coupled fields. Our model allows us to explore how coherent multiple-pulse protocols can impact desorption in a variety of prototypical experiments.Comment: replaces a shorter versio

    Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    Full text link
    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 micrometer. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy (STM) on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission process above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate

    Egå Engsø - tab af havørredsmolt i en Vandmiljøplan II-sø

    Get PDF

    Immutable Infrastructure Calls for Immutable Architecture

    Get PDF
    With the advent of cloud computing and the concept of immutable infrastructure, the scaling and deployment of applications has become significantly easier. This increases the possibility of “configuration drift” as an operations team manages this cluster of machines, both virtual and actual. In this paper we propose a revised view on configuration and architecture. We propose that software deployed on a public or private cloud should, to the furthest possible extent, be immutable and source controlled. This reduces configuration drift and ensures no configuration problems in production as a result of updates or changes. We will show an example of a software project deployed on Amazon Web Services with an immutable Jenkins setup which manages updating the whole cluster and is self-regenerating. We will also discuss how this lends itself naturally to interoperability between clouds, because of the infrastructure-agnostic nature of this approach
    corecore